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1. Introduction

The problem of assigning the closed loop poles of a linear time
invariant multivariable system using a proper, linear, time invariant,
output feedback compensator continues to be of great interest. Even
though several outstanding issues remain, good progress has been made
as evidenced by the interesting work of several researchers. Some
recent work can be found 1& the references.

In particularKimura 1975, Davison and Wang 1975 show that for a
controllable observable plant (order n, m outputs, £ inputs) it is
"almost always" possible to assign min(n,m#2-1) closed loop poles arbi-
trarily close to a given set of real and complex conjugate values, by
using constant output feedback. The issue of what happens to tHe remain-
ing unassigned poles is not addressed. In a recent paper Antsaklis and
Holovich 1977 present a different way of assigning min(n,2+m-1) poles and
suggest ways of dealing with the remaining unassigned poles. They also
extend their result to include dynamic output feedback and show fhat if
the original system is initially augmented by q integrators and then
constant output feedback applied, m+2+2q-1 poles can be assigned.

The present work deals with the question of how many poles can be
assigned when the order of the compensator is fixed. It is shown that
if a compensator of order q is usad then min(n+q,(q+;)h+q) poles can be
arbitrarily assigned. Throughout the paper it is assumed that m2%. This
is not a restrictive assumption because the 22m case can be treated in a
very similar way and "dual" results obtained, (i.e. min(n+q,(q+1)2+q poles
can be assigned). The method of attack is different than the prg;&gyaugggs
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result. It is further suggested how the locations of the remaining
unassigned poles can be controlled. .

The work proceeds in the following manner. The question of assign-
ing real poles is addressed initially. The Main Lemma takes up the issue
with é strictly proper plant with m outputs and one input. This result
provides insight as to how the general case might be handled and 1is
successfully applied to the mxt, m2% case in the Theorem. It is then
shown that the case of real and complex conjugate poles can be treated

in the same manner.
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2. Formulation

The following feedback configuration is considered:

N

—

where P is a strictly proper mxs input-output transfer function which
represents the plant and C some f£xm proper dynamic compensator. Both
P and C have elements in R(s) the field of rational functions in s over

the reals R. The closed 1oop transfer function G is given by
G = P(I +cP)L,

If the following notation for mtrix fraction representations

(Desoer and Vidyasagar 1975, Kailath 1980) is used:

Ps= BRPAﬁg some right representation of P, |
= A[%BLP' T _some lef? representation of P,
= Nprig some right coprime represeﬁtation of P,
= DE;NE% some left coprime representation of P,

then G can be expressed as:

< R .- -1,
G = Bpp(A cAgp * BicBrp) Ac




-ID

_ R
= Nep(DycPpp * NicNpp) Dpg = Npp ¢ Op¢
]

TV Y
H 1

Npp DLc (1east order),

n n v n _
where NRP’ ¢ are right coprime, DLC’ ¢ left coprime.

It can be shown (Chen and Hsu 1968) that if ¢(s) is the characteristic
polynomial of the closed loop system then

¢(s) = o det ¢

where o is some non-zero constant.
Now if ¢(s) = s+ 451 si-1 . $5.2 si-2 .o * ¢, we know that

s = (sl.sz....,sk) k < i are roots of ¢(s) iff

[¢1_1$¢i_23-.-9¢0] SI-I S;-l 51-1 z - [s;’s;....’s;]
| i-2 i-2 i-2
Sl 51 sk
Sl SZ Sk
i 1 1 1
. q :

where Q is an ixk matrix.

Several definitions of genericity have been used. Throughout this
paper a set S:Rt will be called generic if it contains a non-empty
Zariski'open set of R® (Zariski and Samuel 1958).




I

-5-

3. Single-Input, Multiple-Qutput Case

If P is an mx1 strictly proper transfer function, of McMillan degree n,

it can be written in the right coprime representation:

N g}

0
|

where

_ N n-1
s +d _qs +...+d

o
il

o
- n-1
N=N (3 + ... + N0 .

Now a 1xm proper compensator of order q can be written in the left represent-

ation
C = x1y

where

.« 9 q-1
X=Xy s+

= q q-1
Y Yq ST+ Yq_1 STT AL Y,

If x, Y are left coprime then the closed loop characteristic poly-

nomial is:

¢(s) =xd + YN = PULE Y ¢n+q-1 s""'q’1 LARTREL K M

This relationship can be expressed in the following way:

(1, Yqr %q-1° Yq-l’ coeaXgr Yol §q+1(d,N) = [1,¢n+q_1....,¢°]

(3.1)




.........

where Sq+1(d,N) is the Q+1th order Sylvester Resultant (Bitmead et al
1978) of d, N (a (q+1)(mx1):x (n+q+1) matrix).

From the above one can clearly see that the coefficients of the charac-
teristic polynomial are linear functions of the compensator parameters.
This consideration will play a crucial role in the mxt case where a com-
pensator structure will be employed, that satisfies this condition.
Main Lemma

Let P = Nd~! be an mx1 stfict]y proper transfer function, with d of
degree n, with m|n and q20 a fixed integer. Let k = (q+l)m + q s n+q = 1,

and ¢(s) be the closed loop characteristic polynomial and define:

sn-l sn-l

mntny . _ N | =
W= {(Nd) eR |d=s"+d + ...t do,N =N, +ooot N}

1

S = {(SPSZ’ cees S) € Rkls1 real}

l of order q such that $13Sps--+s5) are roots

Z= {(N,d,s) € g Rk[ For which there exists a proper compensator
of ¢(s)

Then Z is a generic subset of R™*M x RK,
Remark: The requirement that m|n is not restrictive and it is introduced
for convenience. The general case can be treated with very minor alterations.
Let §a+1, be the submatrix obtained from.sq+1(d,N) by removing the first
row and first column and a the first row of Sq+1(d,N) with the first entry
removed.

Since S1sSgs--- Sy will be the roots of #(s) iff
[¢1_19¢1_2-99:-¢0] Q=- [51195219---o5k1]

sl,sz..ﬁ..sk will be the roots of ¢#(s) if we can find a Y
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x = [Yq ! xq-1, Yq-]:, seey Xo, YOJ

such that

= i, i i .
X Sq+1 -Q=- [51 952 n--:sk lJ-a-Q. (3.2)
The compensator which will accomplish this is

-1Y

C=x

e <0 q-1
X =Sl 4x, 8T 4 kX,

= q
Y Yq s'+ ... +_Yo .

The Main Lemma suggests that this can be done for "almost all" N, d and

5= (sgs «ves Si)

Proof:

It is required to show that Z contains a non-empty Zariski open set.

The matrix 5., Q is kxk. Let RR™" x R¥ for which it is invertible.
§§+l is rank k on a Zariski open set, which is non-empty since any Nd'1

with equal observability indices will belong to this set (Bitmead 1978).
The matrix Q is also rank k for a generic subset of Rk since Q is rank i
for any s for which the sy are distinct. The product will be invert-
ible for a generic subset of RN X Rk. Equation (3.2) therefore does
have a solution for a generic subset of RN Rk.

We further need to show that the x(s), Y(s) so constructed are
generically left coprime. Clearly x(s), Y(s) are left coprime in a Zariski
open’ set, we just need to show that this is non-empty. To do this we must

suggest an (N,d,s) which can be thought of as a point in R™™M x RX space
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for which the x(s), Y(s) are left coprime. This is done in two steps:

a) The 1x1 case.

DERSLEINS, “™ LCEEPMEA

Let L) PITESEL WL U PRPRL Y be real and distinct with

L.’ 51'52' ese 'Si > Oo
Let d(s) = s".

Let ng,n;,...n, _, be defined as follows:

(-!)1n0 = SI'SZ' soe Si
(-1)""1n1 = sum of all possible products of i-1 roots at a time.
(-1)"'2112 = sum of all possible products of i-2 roots at a time.

.

(-1)1'"+1nn_1 = sum of all possible products of i-(n-1) roots at a time.

The solution of (3.2) then becomes
y= [Yq, Xge1® *e+s Xgo YO]

where Y =Y

q q-l = >0 = Yl = 0’ Yo = 1

and
(-1)1'“x0 = sum of all possible products of i-(n-1)-1 roots
" at a time '

(-'l)zxq_2 = sum of all possible products of 2 roots at a time
(-1)Xq_1 = sl + 52 + S3 + aee + 51 .

An's (sq°sp°... ts5 > 0) can be found such that for this test
point §q+'l Q@ 1s full rank and the corresponding x(s), Y(s) left

coprime.

«22a
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b) The mxl case.
Let d(s) = s" +d -l ... +d

n-l s L ] o
K K K
n-1 n-2 0
N(s) = -1, s"2 . oo ¥
Mn-1 N.-2 "o

where the Kj's are m-1x1 vectors. The assignment of

dy_qsev-2dgs Ny gseeesNygs S19Sps.tess; s as in part a).

The Kj's are’assigned in the following way:

et Ky =K = =K =0 K TR = =K = 0

with t = n-2q-1 let,
Kq+1 = Kl
Kyt = Ky -

Choose ?i Ké, Ki and s in such a way that

K, Ky K, 0 0

~ 0 ?£ cee Eé K, ... 0 q+1 block rows
K = L ]

X and 'S'é 41 Q are full rank,

The solution to the corresponding equatién 3.2 is:
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The Xqa1? toe Xg S in part a).

)
And again x(s), Y(s) are left coprime, for this test point.
The above guarantee that x(s), Y(s) are generically left coprime.

This completes the proof of the Main Lemma.

The Main Lemma suggests that for “almost all" mxl transfer functions
of McMillan degree n and for “"almost all" s, k = (q+l)m + q there exists
a proper compensator of order q such that S$1980s.+ 455 are k roots of the
closed loop characteristic polynomial ¢(s). Since ¢(s) is of degree n+q
this means that in general there are n-(q+1)m unassigned poles. This means
that some of these could even be unstable. As this is a matter of concern
it is presently under investigation. It is possible that by restricting
the assignable roots to 1ie in a certain region to assure that all of them
are stable. In the general mx2 case it is shown how additional compensator
parameters can be introduced to help control the remaining unassigned poles.

In the last section it will be shown that real anq complex conjugate
values can also be considered and that the Main Lemma continues to hold.
Kemark: It is interesting to note how the number of assignable poles
increases as a function of g, the order of the compensator. Assuming that

m|n and since "generically" the observability indices of the plant are all

ul
m

If q=0, m poles are arbitrarily assigned.

equal to u = —, we see the following:

q=1, 2m+l poles are arbitrarily assigned

q=u-1, um + u-1 = n+u-1 poles are arbitrarily assigned,
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j . which means that all closed Toop poles can be arbitrarily assigned. A

similar result when q=u-1 has been obtained earlier by Brasch and

Pearson T970using a different approach.

An algorithm for constructing the solution involves expressing P in a
right coprime representation and solving a 1inear equation over the reals

(or complexes) since y from (3.2)
Y =- [SID S;» ceecsy sl](§q+l d Q)-l - “Q(§q+1Q)-1 .

Comparing this procedure with the one suggested by Antsaklis and
Wolovich 1970 for the mxl case one can see that for a compensator of order
q, using the present method (m+l)q + m poles are assigned, whereas with the
earlier one 2q + m are assigned. It should also be pointed out that the
method used there i{s different than the present one in this respect as well,
in that initially P is augmented by q integrators and then constant output
feedback is used to close the Toop.

The example below helps to illustrate and clarify the procedure.

Example 1
Let m=2, %=1, n=6.

1 0 0 1 2
d= s6 + 52 + 2 N = 55 + s4 + s3 + s +
0] 1 1 0 1

a) Let gq=0, i.e. a constant compensator. The result suggests that 2 poles
can be arbitrarily assigned.
Let S = -1, Sp = -2.

The compensator used is given by

x=1 Y =[y, ¥l
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and Yy» ¥ are obtained as the solution of

01100 1
1
51 S2
51 %2

Lypoyd - 10001 Z][5,° 5,7 = - [5,%5,%7 - [0, 0,0, 1,0, 2]+ @
1ls,4
.3
2

Computing the solution yields

= 17 =
y1-16 » .yZ'-4

and the compensator
= [ -
c=[3f . -4l

b) Let q=1. Then 5 poles can arbitrarily be assigned.
Let Sl = -1’ 52 = "105, 53 = -2’ 54 = -2-5’ SS = "3.
The compensator used is given by

X=S+X1 s Y’[.Vla.Yz]5+[.Y3s.‘/4]

It is obtained as the solution of:
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[+)]

6

[yys¥p:%1s¥30¥,] - [1 0001 20][s,
0110010||s,
100010 2f|s,
0100012

Sg Sg
Sy Sg
S, S4 Ss
S;” Sp” S3” s, sg
001100 1] S1” 8o S3 S4 Sg

S3
53
S3

S2
S2

N W 2o O
N W 2 O
N W A2 O
N W e o
N WO,

Sl 52 53. 54 55
1 1 1 1 1

T e ——

Q

7

S - [517,527’53 347 557] - [0, 0’ 0’ 1’ 0, 2, OJQ .

Computing the solution yields

X, = 5.242544771594,
3.436523038651  y, = 24.13305548336
= 2.405828042428 y; = 7.162876396989

< «
W
] n

and the compensator
C= El“ys yzs*’z;:l.
s + X1 * s+ X1
c¢) Let g=2. Then all 8 poles of the closed loop system can be assigned.
Let s, = -1, s, = -1.1, s34 = -1.2, 5, = -1.3, Sg = -1.4, sg = -1.5,

57 = "1.6’ 58 = ‘1-7.

The compensator which accomplishes this is given by C = x'lY

x = 52+ Xis + %o Y = [y, yzlsz + [y Yqls + Lygs ¥gl

where
X, = 275.0363186229 s Xo
y; = -335.7496784115 , Yo
y3 = -91.31887959451 , Yq = -41.2992798809
V- = R 7RR7RQQKRA7R . v. = 17.61171990276

—e—

63.27143983832
68.68243973376
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4. Multiple-Input, Multiple-Output Case a

If P is an mxe (m>%) strictly proper transfer function of McMillan
degree n and equal controllability indices A, (i.e. n=g1) it can be

expressed in the right coprime representation:

I
P = NppPrp
where
A -
Ogp = 1" + 0, ;14 L+ D, (4.1)

N N
-1 sA-l + ... 4 ol .
Kye1 Ko

Dy» N; are 2xz matrices, K, are (m-2)x2 matrices. Now if an 2xm

proper compensator C = X'1 Y is used of the form

=X s9 q-1
X qu + Xq_ls o v X

-y sl q-1
Y qu + Yq_ls et Y,

(Xi are xe, Y,i are 2xm), and X, Y are left coprime then the closed loop

characteristic polynomial is given by

4(s) = det(XDpp + YNpp) .

= ¢
If one uses Sylvester Resultants to express the relationships

XDRP + YNRP one has the following:




3 [Xgs Ygs +vn Xoo YoJ [T1s Dy g5 Dy 9 «oes Dgs 05 ety 07
E 0 Ny_;5 Ny_os Ng» 0s +2us O
0 Ky _ys Kio2o ) Kgs 05 <20y O q+l block
rows
. (4.2)
I Dy 4sDy pseees O
0 Ny ;N gseees O
i 0 KygoKygoeees 0]
= [°x+q’ O4q-1 *o 0,1 >
where o =0, s . 40, is axe.

A+q 0

Now since ¢(s) = det ¢, it is evident that in general the coefficients of
¢(s) are non-linear expressions in the compensator parameters. This is
precisely where many difficulties concerning the pole assignment problem
lie. One way of proceeding is to find ways of exploiting this non-linear
structure. In this paper a successful approach is presneted which “avoids"
the non-1inear analysis. The problem is formuiated iﬁ'such a way that Fhe
nonlinear structure is forced to become 1linear. | |
Suppose that the compensators under consideration are restricted to

have the following structure.




g
. -16~
3 _ _ _ )
;‘ i ],0,0’0 see 0_1 q_lxl,o ce e 0.1 0x1,0 s s e 0
- 0 0 0
X = 9+ 91, +
01 . 0.1 L1
0 0 | o (4.3)
. Xq Xge1 Xg
= — -
rqyl’qu’ qyr. qym 0¥1°0¥2* - 0¥s? 0¥m
Y=|. s + +| .
02_1 0 Iz-l 0
0 J _ 0 ]
A T
Yq Yo
Therefore
" x(s), 0y ... 0] T ¥11(5)0¥7008)s wen ¥y, ()0 oen yyp(s)T
0 0
X = Y =
Ia : I1 0
L 0 — b 0 . J

By construction C = x'ly is proper.

Now if y(s) is the first row of Y, (dll(s)’dlz(s)""’dlz(s)) the first
row of DRP’ gd(s)lthe Jth column of NRP and (¢11(s),¢12(s),...¢12(s))

the first row of ¢ one has the following:

x(s)dy1(s) + y(s)n;(s) = ¢,(s)
x(s)d;,(s) + y(s)ny(s) = ¢;5(s)

x(s)dy (s) + y(s)n,(s) = ¢;,(s) .

.'L. \ ) . — . am N II.IIIIIIi
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;‘ . Let ¢ be the (2-1)x2 matrix which contains the remaining 2-1 rows of ¢.
t _ Then

- _ A -

- a-1 -
A_1+Nx_1)s + ...+ (D

o*Np)
where 5}, ﬁ} are obtained from D,, N; by removing the first row.
Now since the closed loop characteristic polynomial is ¢(s) = dets one

can easily see by expanding the first row that:
$(s) = 411 ()agy *+ (80815 * oon 49, (S)y, (4.4)

(Ali is the appropriate (2-1)x(2-1) minor of ¢). The coefficients of ¢(s)
are linear expressions in the compensator parameters. This relationship

is made more explicit in the following:

¢(s) = x(s)(d;y(s)agy + ... +.dy,(s)ay,) + y(s)ny(s)ayy +...4n,(s)8;,)
d =N

= x(s)d + y(s)N. (4.5)

Since d is a polynomial of degree Af=n, N an mxl vector of degree ii-1=n-1,
x(s) a polynomial of degree q and y(s) a lxm vector of degree q this fits
precisely the formulation used in the analysis of mxl systems. Namely

(4.5) can be expressed as:

[L¥guxg ys +oes XgoYglSgqy (dM) = [1,8 00 .. @] (4.6)

This would indicate that the Main Lemma could somehow be used in obtain-
ing a result for the mxe case. In a sense the orfiginal mxg system has been
"transformed" (or reduced) to the mxl system corresponding to (4.5). This

"transformation” will play a crucial role in the proof of the upcoming

“ .' ; , ; | ; I'J
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L‘ . Theorem, and is therefore now made more precise.

Let the given transfer function (4.1) be parameterized as follows:

ﬁ T alg ...a!' &()‘_1)2+1...axl
DRP = . '+ . $” T+, .+
0
i 1 3(2-1)a041" " | qgeree
Dy-1 Do
a a 7 a v.. @ 7
uz+1 uzn Fuz+(>‘-1)9.+1 uz+u
2 . [}
a > 00 L[] - a
xzz+(z-1)xz+1 xzz+xzz
NRP' a a_
ZM2+1 . A7+
S m-L
a 2 LN ) a 2
| 222"+ (m=2-1)22+1 | 222+ (m-2) A
N)\_1 N

Let the reduced transfer function obtained in (4.5) be parameterized as
follows:

d=s"+ bls""1 + bzs"'2 + ... +Db

n
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bn+1 bn+2 bn+n
b2n+1 b2n+2 b3n .
N = sn-l + ¢ sn-z + +
Bon+1 Bon+2 b(2,+1)n
b(z+1)n+1' ) b(9.+_1)n+2 b(z+2)n
i J _ i | P(m1)n |

Let a = (al,az.... It is clear from (4.5) that each bj is a

g (mts))
function of a and will be indicated as such bj(g) whenever necessary.
It is in fact a polynomial in a.

Let £: RMME) __ pn(m+l) b defined as:

f(2) = (bysbyeeeesbipyyy) = 2

The function f therefore describes the "transformation" precisely. The
structure of f will play a very important role in the proof of the main
result where it will be required to show that the Jacobian of f, Jf is ~

full rank at some point a. The following Proposition addresses this issue.

Proposition. Let J¢ be the Jacobian of f. There exists a point 2 (i.e.
a specific transfer function of the type (4.1))such that Jf(g) is full
rank.

Proof:

The minors 843 of ¢ were introduced in (4.4).
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Let
e {2-1)2 (2-1)2-1
441 = S MRUTE + ...+ hl,(z-l)x
- (2-1)a-1
A12 hZIS + see + hz.(l-l)l
- (2-1)a-1
12 Re1S e by an

Let A be the nxn matrix

1 0 (] ' 0 ] o . . 0 T
hyy hyy Ny i1 ° o . .
"2 2 P Y L
. . . . : v 0 0
: . - v My "y L
A= 'l.h-l)x hz.(z-x)x 'z.(t-l)x: E E
o 0 0 :"l.(z-x)x "2, (211 Pe(e-t)a o
o o o !0 0 o . .
a1 . . : . . : :
| 0 ° o ‘o ° o By (e P2 (e "z.(z-lh_
A block columms.
- st
Let ) (°1’°2’ au) 1°* row of DRP
- nd
[P (GM,+1’ aZM) 2™ row of aRP
%4y * (an(m-l-z-l)-!-l an(mﬂ.)) last row of Noo.
- - - -
Let b, 'Bn 1 B Ban+1
) bz .
Bl B2 | Bt
_bq_ :’Zn_ _b(m+1)n_J
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Let "0 0 0] '
0 0 LN 2 0
R=1|A 0 » an (2+1)n x (2-1)n matrix
A
- -
- . 0
A= . » an (m-2)n x (m-2)n block diagonal matrix.
0
L A

Let B be an (2+1)n x (2-1)n matrix and E some (m-2)n x (2-1)n matrix.
As will be seen very shortly the structure of B and E is not needed
for the proof.

Then Jf is given by

A Iol ! !

' 1 ' ] ' '

] ' ‘A ' '

1 ! 1 t ' '
o' B8 ' 'R+ ' 0 !

[ ! ! ) [ '

J. =2 Ve 0 0 o o l-o_l _____ L, !
f [ ) ' 1 ) ]
r 0! E ' ! E ' K‘ 1

1 [ ' ' '

which can be transformed by a similarity transformation to:

A -

A




| gfhadi Jq+1 M 1« Wl JTWHIRN Qv wiie CUT I SIPWITMIITY A\FJy "\@) swerw

coprime.
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with a block diagonal (square)matrix with A's on the diagonal.
It is easily seen that for the point a defined by: '
0 -1 0 0]
0 0 -1 0
D=1s* , N=|: :
-1
{ 1 1 1 1
d 0 —
_ A is full rank and so therefore is Jg- This completes the proof of
]
the Proposition.
The stage has now been set for stating and prooving the main result
of this paper.

let P = NRPDRP-I be an mx¢ (m2%) strictly proper transfer function

DRP = 1s* + Dx 14 ... 40
A

-1
Ngp = ; _ﬂs"‘l T ‘[28]
~

Let m{n and q20 a fixed integer. Let k = (q+l)m + q s n + q = 1, ¢(s) the

0

closed loop characteristic polynomial and define:

- (m«u)nl - Te? -1 - A-1
W {(NRP,DRP)eR Dgp = Is” + D, (877" + ... +Dg, Nop [NA_ + ... 0[@
: K

K =1
Ss= {(51! 520 svey sk)C R |S1 Tea]}

(m+}.)n k ' For which there exists a proper compensator of |
Z'- {(NRP’DRP’é) R xR order q such that s;,5,,...,5, are roots of ¢(s)

Then Z 1s a generic subset of R(M*EN 4 gk
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Remark: The requirement that m|n is introduced merely for convenience.

Proof:

From (4.6) let y = | [Yq, Xq-10 +e0 Xg» Yo]. Then as in the mxl case

Y §q+1(d3N)Q = '[5119521,...,Si] -a-+Q. (4.7)

This follows directly from the reformulation of the mx% problem as an mxl
problem. §§+1(d,N) is a matrix whose entries are polynomials in a. Now
the set EC R(mﬂ')" x RK for which a solution to 4.7 exists and is such
that the corresponding x(s), y(s) are left coprime is a Zariski open set.
For it to be generic it must be shown to be non-empty. The Main Lemma
guarantees this to be true for almost all b x s. Since there exists an a
(by the Proposition) for which Jng) is full rank, then there exists an
open set U such that f(a) ¢« U and f(R("'”‘)") 2 U, {by the inverse function
theorem Luenberger 1969). This means that E contains at least one point.

This completes the proof of the Theorem.

The Theorem suggests that for “"almost all" mx2 transfer functions of
McMillan degree n (and equal controllability indices A-=% ) and for "almost
all" s, (k = (g+1)m + q) there exists a proper.compensator of order g such
that $13Sp9--+»S) are k roots of the closed 1oop characteristic polynomial
¢(s). As in the mxl case some roots may be left unassigned. In the multi-
input case the possibility does exist for introducing additional parameters
in the compensator that can be used to control the remaining roof§.

One such possibility is to modify the original compensator structure.
Let € = X1y, " :
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[ x(s)s 0, vous O ’_yl(s), yz(s), cens yz(s), cees ym(s)—
0 ) 0
X = : Y = :
1, L 0
. |0 i

where L is an 2-1 x 2-1 constant matrix containing (z~-1)2 free parameters
comprising a vector €. The compensator C = X'lY is still proper of order q.
Following a similar proof to the one given one can show that k poles can be
arbitrarily assigned for almost all ¢ x a x § ¢ R(R'l)2 b3 R(""”L)n x RK.

This means that for "almost all1" choices of a and s a proper compensator

of the form given above, which is parameterized by ¢, (valid for "almost all"
c), can be constructed which assigns k poles of the closed loop system to
s= (sl,sz,...,sk). The freedom affofded by the presence of these parameters
can then be used to "control" the location of the remaining unassigned poles.

An illustrative example is given in section 5.

Remark: As in the mxl case the number of assignable poles increases as a
function of q in such a way that if q = u-1 then all the closed loop poles
are arbitrarily assigned. Brasch and Pearson 1970 show, in an entirely
different way, that for a controllable observable system adding a u~1 order |

compensator is sufficient to ensure arbitrary pole assignment.
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5. Complex Poles

The concern thus far has been the arbitrary assignment of a number of
real poles. The results remain valid for the case when real and complex
conjugate roots are desired. It is evident that generically a solution to

' (3.1) will exist. The only requirement is the invertibility of §§+l - Q.
Since the solution contains the compensator parameters the critical issue
is to show that the unique solution is real. This issue is addressed in

the following Lemma.

Lemma.

Let é = (51,52,53’543000 ’SZJ'-IQSZJ',SZJ+1,000,SK)

be a set of k-2j real and 2j complex conjugate va]ues,((sl,sz), (s3,s4) .-
(52j-1’52j) are j complex conjugate pairs and 52j+1""’5k k-2j rea. vai.:s.

The unique solution y of (3.2)

S .(d,N) - Q= - [si si si] -a-Q
L7 3¢t 125225

(whenever it exists) is real.

Proof:

Let the ith row of §§+1 be thought of as the coefficients of polynomial

¢ - Then
-¢1(51)9¢1(52)9 seey ¢1(5k)_

sq+1 Q= ¢2(51)9¢2(52), ey ¢2(sk) =M.

[0 (s1)00(55)s evs 0y (5))
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L Since

y=- [sI, s;, cees sl'i]M'1 -a - QM'l

then y will be real if

[sf, s;, cees SE]M-I =.[u1, Ups «ovs "k] is real for

every integer t 2 0.

If Mij is the i,J minor of M then

[(-1)']""155'!‘].1 + (-1)j+2s§Mjz + ...+ (-1)j+ksk jk]

u, = — £ -
5T sy + (1305 (5 oMy + e+ (1) 0 (5 M5,

th .

where det M is expanded using the j ow.

It is not difficult to see that uj = uj* where * indicates complex
conjugate. This means that u:j and therefore y is real.

Using this result one can easily see that the Main Lemma and Theorem
still hold if s contains real and complex conjugate values.

The following example helps to illustrate the poleassignment method

in the multi-input ﬁu1ti-output case.

Example 2
Let m=2, 2=2, n=4 and

Dop = S Nop = S + .
RP 1o 1 RR 11 o 11

Using the modified compensator structure given in (4.8),

1 0 Yy y
X = Y = 1 2 ,
0 1 0 c

e L : i | A ]
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this transfer function is reduced to the 2x1 transfer function

0 0 c c
d = s4 + cs2 N = s3 + s2 + s +
1 1 0 0

The results suggest that with a constant compensator (q=0), 2 poles can
be assigned.

Let Sl = ('1 + jZ) 9 52 = ('1 - jZ) .
The compensator parameters Yy» ¥p are given as the solution of

[y, »¥,] [: 0 ¢ EJ 50 5,7 = - [sh5,"0 - 10,6,0,00 5, 5,37

2.2

1 1 00 Sl 52 51 52
51 %2 51 %2

11 1 1]

Computing the solution yields

o (c-3)25 < 143C
%! g&c * Y27 7B

and the compensator in parametric form

(c-3)25 7+3¢
8c 8

0 c

C =

This compensator makes the closed loop characteristic polynomial equal to
¢(s) = (s2 +2s + 5)(52 +'%(c-3)s +'§(c-3)).

One can easily see that for "almost all1" choices of c(i.e. c#0) the campen-
sator makes -1 + j2 and -1 - j2 two of the closed loop poles. In this
simple example the remaining two roots can be explicitly expressed as

functions of ¢.

St . ’.i—'.|i||||'| . 1




o w=3(c-3) = /oct - 214c + 561
3,4 16

In particular for c > 3, S3 and S4 are guarahteed to be stable. Had one
used the compensator structure suggested in (4.3), c=1, it would correspond
to sg = 1.5542476, S4 = -.8042476. which includes an undesirable pole.

The above suggestion becomes a very powerful tool in that the compen-
sator C is given, parameterized by ¢, that assigns k of the closed loop
poles. Since the remaining poles in general depend on ¢, they can in turn

be controlled.
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6. Conclusions

Using an approach involving Sylvester Resultants it is demonstrated
that generically min(n+q, (q+1)m+q) closed loop poles can be arbitrarily
assigned with an output fedback compensator of order q. It is further
suggested how the locations of the remaining unassigned poles could be
controlled. The approach is different than the ones followed by Antsaklis
and Wolovich 1977, Brasch and Pearson 1970, Kimura 1975, Davison and Wang
1975. For the appropriate cases the result is an improvement of the
earlier result (Antsaklis and Wolovich 1977, Kimura 1975) for dynamic
output feedback. The method of solution can be easily programmed on a
digital computer.

It is my belief that the results in the multivariable case can be

strengthened by exploiting more effectively the compensator structure.
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